This video shows hands-on tutorial as how to run Llama 3.1 8B model with Ollama on free Google colab with AdalFlow.
Code:
!sudo apt-get install -y pciutils
!curl -fsSL https://ollama.com/install.sh | sh # download ollama api
from IPython.display import clear_output
# Create a Python script to start the Ollama API server in a separate thread
import os
import threading
import subprocess
import requests
import json
def ollama():
os.environ['OLLAMA_HOST'] = '0.0.0.0:11434'
os.environ['OLLAMA_ORIGINS'] = '*'
subprocess.Popen(["ollama", "serve"])
ollama_thread = threading.Thread(target=ollama)
ollama_thread.start()
from IPython.display import clear_output
!ollama pull llama3.1:8b
clear_output()
!pip install -U lightrag[ollama]
from lightrag.core.generator import Generator
from lightrag.core.component import Component
from lightrag.core.model_client import ModelClient
from lightrag.components.model_client import OllamaClient, GroqAPIClient
import time
qa_template = r"""<SYS>
You are a helpful assistant.
</SYS>
User: {{input_str}}
You:"""
class SimpleQA(Component):
def __init__(self, model_client: ModelClient, model_kwargs: dict):
super().__init__()
self.generator = Generator(
model_client=model_client,
model_kwargs=model_kwargs,
template=qa_template,
)
def call(self, input: dict) -> str:
return self.generator.call({"input_str": str(input)})
async def acall(self, input: dict) -> str:
return await self.generator.acall({"input_str": str(input)})
from lightrag.components.model_client import OllamaClient
from IPython.display import Markdown, display
model = {
"model_client": OllamaClient(),
"model_kwargs": {"model": "llama3.1:8b"}
}
qa = SimpleQA(**model)
output=qa("what is happiness")
display(Markdown(f"**Answer:** {output.data}"))
No comments:
Post a Comment