This video installs R2R (Rag to Riches) with Ollama and local models which is the ultimate open-source framework for building and deploying high-quality Retrieval-Augmented Generation (RAG) systems.
Code:
conda create -n r2r python=3.11 -y && conda activate r2r
pip install -U 'r2r[all]'
pip install -U 'r2r[local-embedding]'
sudo apt install -y postgresql-common
sudo /usr/share/postgresql-common/pgdg/apt.postgresql.org.sh
sudo apt install postgresql-15-pgvector
cd /tmp
sudo -u postgres psql
###create role, database and extension in video
\q to exit
sudo systemctl enable postgresql
sudo service postgresql start
sudo -u postgres psql
export POSTGRES_USER=your_user
export POSTGRES_PASSWORD=your_password
export POSTGRES_HOST=your_host
export POSTGRES_PORT=your_port
export POSTGRES_DBNAME=your_db
mkdir r2r
cd r2r
touch local_ollama
-- and then pasted below config in local_ollama file:
{
"embedding": {
"provider": "sentence-transformers",
"base_model": "all-MiniLM-L6-v2",
"base_dimension": 384,
"batch_size": 32
},
"eval": {
"provider": "local",
"frequency": 0.0,
"llm":{
"provider": "litellm"
}
},
"ingestion":{
"excluded_parsers": {
"gif": "default",
"jpeg": "default",
"jpg": "default",
"png": "default",
"svg": "default",
"mp3": "default",
"mp4": "default"
}
}
}
python3 -m r2r.examples.quickstart ingest_as_files --no-media=true --config_name=local_ollama
No comments:
Post a Comment