This video is step by step tutorial to setup AWS Bedrock with VPC Endpoints and PrivateLink to build secure and private generative AI applications.
Steps:
Step 0: Make sure that Private subnet with private route table without any route to internet is there.
Step 1: Create 2 SG = Bedrock-Endpoint-SG and Bedrock-Lambda-SG
Step 2: In Bedrock-Lambda-SG , ADD Bedrock-EndPoint-SG for all traffic in INBOUND, and OUTBOUND FOR 0.0.0.0
Step 3: In Bedrock-EndpointP-SG, Add Bedrock-Lambda-SG for all traffic in INBOUND and OUTBOUND
Step 4: Create 2 endpoints bedrock, bedrock-runtime in private subnet and attach Bedrock-EndpointP-SG with both
Step 5: Create lambda function, set time to 15 seconds, and attach Bedrock-Lambda-SG, lambda execution role should have bedrock permissions
Lambda Code:
import boto3
import json
def lambda_handler(event,context):
bedrock = boto3.client(
service_name='bedrock',
region_name='us-east-1'
)
# Bedrock Runtime client used to invoke and question the models
bedrock_runtime = boto3.client(
service_name='bedrock-runtime',
region_name='us-east-1'
)
models = bedrock.list_foundation_models().get('modelSummaries')
for model in models:
print(model['modelName'] + ', Input=' + '-'.join(model['inputModalities']) + ', Output=' + ''.join(model['outputModalities']) + ', Provider=' + model['providerName'])
return{
'statusCode':200,
}
No comments:
Post a Comment