This video explains in easy and simple tutorial as how to train or fine-tune TinyLlama model locally by using unsloth on your own data.
Code Used:
import torch
major_version, minor_version = torch.cuda.get_device_capability()
!pip install "unsloth[colab] @ git+https://github.com/unslothai/unsloth.git"
from unsloth import FastLanguageModel
import torch
max_seq_length = 4096
dtype = None
load_in_4bit = True
model, tokenizer = FastLanguageModel.from_pretrained(
model_name = "unsloth/tinyllama-bnb-4bit",
max_seq_length = max_seq_length,
dtype = dtype,
load_in_4bit = load_in_4bit,
)
model = FastLanguageModel.get_peft_model(
model,
r = 32, # Choose any number > 0 ! Suggested 8, 16, 32, 64, 128
target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
"gate_proj", "up_proj", "down_proj",],
lora_alpha = 32,
lora_dropout = 0,
bias = "none",
use_gradient_checkpointing = False,
random_state = 3407,
max_seq_length = max_seq_length,
)
from trl import SFTTrainer
from transformers import TrainingArguments
from transformers.utils import logging
logging.set_verbosity_info()
trainer = SFTTrainer(
model = model,
train_dataset = dataset,
dataset_text_field = "text",
max_seq_length = max_seq_length,
packing = True,
args = TrainingArguments(
per_device_train_batch_size = 2,
gradient_accumulation_steps = 4,
warmup_ratio = 0.1,
num_train_epochs = 1,
learning_rate = 2e-5,
fp16 = not torch.cuda.is_bf16_supported(),
bf16 = torch.cuda.is_bf16_supported(),
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.1,
lr_scheduler_type = "linear",
seed = 3407,
output_dir = "outputs",
),
)
trainer_stats = trainer.train()
No comments:
Post a Comment