This tutorial guides you as how to install and run Ludwig to train a model on AWS Sagemaker easily and quickly. This shows training Llama model on AWS Sagemaker.
Commands Used:
!pip install transformers
!git clone https://github.com/PanQiWei/AutoGPTQ
cd AutoGPTQ
! git checkout a7167b1
!pip3 install .
!pip uninstall -y tensorflow --quiet
!pip install "ludwig[llm]" --quiet
!pip install huggingface_hub
from huggingface_hub import notebook_login
notebook_login()
import yaml
config_str = """
model_type: llm
base_model: TheBloke/Llama-2-7B-GPTQ
quantization:
bits: 4
adapter:
type: lora
prompt:
template: |
### Instruction:
{instruction}
### Input:
{input}
### Response:
input_features:
- name: prompt
type: text
output_features:
- name: output
type: text
trainer:
type: finetune
learning_rate: 0.0001
batch_size: 1
gradient_accumulation_steps: 16
epochs: 3
learning_rate_scheduler:
warmup_fraction: 0.01
preprocessing:
sample_ratio: 0.1
"""
config = yaml.safe_load(config_str)
import logging
from ludwig.api import LudwigModel
model = LudwigModel(config=config, logging_level=logging.INFO)
results = model.train(dataset="ludwig://alpaca")
print(results)
No comments:
Post a Comment