Wednesday, October 2, 2024

Whisper Large Turbo in Free Google Colab for Transcription - Step-by-Step Tutorial

 This video shows how to install and use Whisper large-v3-turbo in free google colab for transcription in gradio which is a finetuned version of a pruned Whisper large-v3. 



Code:

!pip install git+https://github.com/huggingface/transformers gradio

import torch
from transformers import pipeline

pipe = pipeline("automatic-speech-recognition",
               "openai/whisper-large-v3-turbo",
               torch_dtype=torch.float16,
               device="cuda:0")

pipe("/content/samples_jfk.wav")

import gradio as gr

def transcribe(inputs):
    if inputs is None:
        raise gr.Error("No audio file")

    text = pipe(inputs, generate_kwargs={"task": "transcribe"}, return_timestamps=True)["text"]
    return text

demo = gr.Interface(
    fn=transcribe,
    inputs=[
        gr.Audio(sources=["microphone", "upload"], type="filepath"),
    ],
    outputs="text",
    title="Whisper Large V3 Turbo: Transcribe Audio",
    description=(
        "Transcribe long-form microphone or audio inputs. Thanks to HuggingFace"
    ),
    allow_flagging="never",
)

demo.launch()

No comments: