This video shows how to locally install MiniG model which is trained on a synthesis dataset of over 120 million entries and has 1M token context window. It deals with both text and images.
Code:
conda create -n lm python=3.11 -y && conda activate lm
pip install torch
pip install git+https://github.com/huggingface/transformers
pip install git+https://github.com/huggingface/accelerate
pip install --upgrade sentencepiece
conda install jupyter -y
pip uninstall charset_normalizer -y
pip install charset_normalizer
jupyter notebook
pip install tiktoken torchvision
import torch
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
)
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("CausalLM/miniG",trust_remote_code=True)
query = "What is Happiness?"
inputs = tokenizer.apply_chat_template([{"role": "user", "content": query}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
return_dict=True
)
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"CausalLM/miniG",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
#===================
#For Images:
#==================
import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoTokenizer
device = "cuda"
tokenizer = AutoTokenizer.from_pretrained("CausalLM/miniG", trust_remote_code=True)
query = 'Which lane should I drive in this image?'
image = Image.open("/home/Ubuntu/images/lane.png").convert('RGB')
inputs = tokenizer.apply_chat_template([{"role": "user", "image": image, "content": query}],
add_generation_prompt=True, tokenize=True, return_tensors="pt",
return_dict=True) # chat mode
inputs = inputs.to(device)
model = AutoModelForCausalLM.from_pretrained(
"CausalLM/miniG",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
trust_remote_code=True
).to(device).eval()
gen_kwargs = {"max_length": 2500, "do_sample": True, "top_k": 1}
with torch.no_grad():
outputs = model.generate(**inputs, **gen_kwargs)
outputs = outputs[:, inputs['input_ids'].shape[1]:]
print(tokenizer.decode(outputs[0]))
No comments:
Post a Comment